# Operating Instructions for 

## Counter/Preset Counter

Model: DAG-Z2F80W2



## TECHNICAL DATA

Operating conditions Operating temperature $0-40^{\circ} \mathrm{C}$, humidity $35 . .95 u \mathrm{R} \%$
Sealing Front panel IP65 (with optional gasket),
Box IP30, Terminal blocks IP20
Material PC ABS UL94V0 self-extinguishing
Digital Inputs $3 \times 13$ PNP/NPN configurable as analogue for potentiometers. (max 28 VDC in PNP mode)
Outputs 2 relays 5A resistive charge
OUT 24V 30mA(at 24 VAC supply),
40 mA (at 24 VDC supply),
60 mA (at 110 to 230 VAC)
Back-UP Rechargeable battery, approx. 7days autonomy
Power Supply 24 to 230VAC/VDC +/-15\% 50/60Hz / 2 W

## INTRODUCTIONINTRODUCTION

Thanks for choosing a KOBOLD device. The DAG-Z2 can be set in 2 different modes: Single or Double counter, all with independent settings. 3 universal digital inputs are available (NPN/PNP/Potential free contact) and can be used for bidirectional encoders reading, UP/DOWN counter function, LOCK/HOLD to lock or hold current visualization. One input is also analogue in order to allow setpoint modification by an external


Read carefully the safety guidelines and programming instructions contained ir this manual before using/connecting the device.Disconnect power supply before proceeding to hardware settings or electrical wirings. Only qualified personnel should be allowed to use the device and/or service it and in accordance to technical data and environmental conditions listed in this manual.Do not dispose electric tools together with household waste materials in observance of European Directive 2002/96/CE.

WIRING DIAGRAM


To modify Set1 or Set2 by external potentiometer follow the steps below:
1-use potentiometers 0 to $5 / 10 \mathrm{kohm}$
2-connect cursor to pin I3; a wrong connection may damage the potentiometer and lead to lock of the device.
3-accuracy on input is max 1000 points, therefore set the parameters "Upper limit" and "Lower limit" with a max difference of 1000 units.
(Ex.: LoS1 to 50,0 and uPS1 to 150,0 to modify preset value related to Set1 between 50 and 150 pulsess with steps of one tenth). Greater differences would make unstable the less significant digit.
4-To calibrate the scale of potentiometer enter the configuration mode and select:
Hin. 3 as Pot Fin. 3 as Set1 or Set2 P.tAr as Enable
Exit configuration mode and place potentiometer at minimum level and press $\square$ key, then place potentiometer at max level and press premere $\mathbb{Q}$ key: the device automatically exit the calibration procedure.
N.B.: A switch-off of the device would interrupt the calibration.

## MEMORY CARD (optional)

Parameters and setpoint values can be copied from one device to another using the Memory card. Attention: Pls. perform first an update of the memory card.
There are two methods:
With the device connected to the power supply:
Insert the memory card when the controller is off.
On activation display 1 shows iEin and display 2 shows $-\infty$.
(Only if the values stored on Memory Card are correct).
By pressing the $\mathbb{\square}$ key display 2 shows LoAd.
Confirm using the key.
The device loads the new data and starts again.
With the controller disconnected from the power supply: The memory card is equipped with an internal battery with a life of about 1000 uses.Insert the memory card and press the programming button.
When writing the parameters, the LED turns red and on completing the procedure it changes to green. It is possible to repeat the procedure.

## UPDATING MEMORY CARD.

To updatethe memory card values, follow the procedure described in the first method, setting display 2 to so as not to load the parameters on controller.
Enter configuration and change at least one parameter.
Exit configuration. Changes are saved automatically.

| LED | MEANING |
| :---: | :---: |
| (1)2 | Report the activation of Q1 |
| $12(2)$ | Report the activation of Q2 |
| 12 | Report serial transmission by the DAG-Z2 |


| SETPOINT MODIFICATION |
| :--- |
| PRESS |
| 1 |

## LOADING DEFAULT VALUES

This procedure restores the factory settings of the instrument.
LOADING DEFAULT VALUE PRESS

DISPLAY
FUNCTION

|  |  | DISPAY |  |
| :---: | :---: | :---: | :---: |
| 1 | (20) for 3 seconds | Display 1 shows $\square$ and 1st digit flashes. <br> Display 2 shows PH55 |  |
| 2 | $\Delta$ or $\square$ | Modify flashing digit and pass to the next one pressing $\square$ | Enter password 9999 |
| 3 | (98) to confirm | Device loads default settings | Switch-off and restart the device |



MODIFY CONFIGURATION PARAMETERS Display 1 shows $\square$ and 1st digit flashes. Display 2 shows PA55 Modify flashing digit and Display shows first parameter of configuration table Fund Increase or decrease visualized value by pressing and an arrow key.

End configuration, controller exits from programming mode.

## PARAMETERS LIST

## Fப円ட. P-01 Counter Function

 5 in BACKUP MEMORY CONFIGURATIO \begin{tabular}{|l|l|}
\hline GחL. \& Counter 1 <br>
\hline Co <br>
\hline

 

\hline 듣.. \& Counter 2 <br>
\hline \hline ALL \& All Counters <br>
\hline
\end{tabular} INPUT CONFIGURATION

P-09 Active State Input 1 Active state Input 1
P-10 Active State Input 2 Active state Input 2
High level (available only for Input 2)
Low level (available only for Input 2)
Falling edge

Disabled
Loading encoder Z
Loading counter 1
Loading counters 1 and 2
Set1 setting by potentiometer
Function associated to UP (up arrow key)
Disabled
Loading counter 2
Loading counters 1 and 2

Disabled
Default
LOCK CONFIGURATION
Counter 1 count mode selection
Counter 2 count mode selection
Disabled
UP mode (11)
Default C1
DOWN mode (11)
DOWN mode (12)
UP mode (11) - DOWN mode (12)
UP mode (11) with reverse direction (I2)
UP mode (11) with count lock (12)
DOWN mode (11) with count lock (I2)
DOWN mode (11) with keeping value on display (12) URATION

Counter 2 visualization selection


## DAG-Z2F80W2

## Declaration of Conformance

We, KOBOLD Messring GmbH, Hofheim-Ts, Germany, declare under our sole responsibility that the product:

## Counter/Preset Counter: DAG-Z2F80W2

to which this declaration relates is in conformity with the standards noted below:

## EN61000-6-3

EN61000-6-4
EMV emission
EN61000-6-2
EN61000-4-2
EN61000-4-3
EN61000-4-4
EN61000-4-5
EN61000-4-6
EN61000-4-8
EN61000-4-11
EMV immunity

## EN61010-1

Safety Extra Low Voltage
Also the following EWG guidelines are fulfilled:
2006/95/EC Low Voltage Directive
2004/108/EC EMC Directive


> H. Peters General Manager

M. Wenzel

Proxy Holder

